The future of AMI and how to maximize your investment

Joel Westvold, E Source Kody M. Salem, E Source Kevin Healy, Halifax Water

Webinar

POWERING WHAT'S NEXT

Wednesday, November 8, 2023

Agenda

- Introductions
- AMI Day 2—Kody Salem
- AMI Day 2 example—Kevin Healy
- AMI 2.0—Joel Westvold
- Q&A

Introducing our speakers

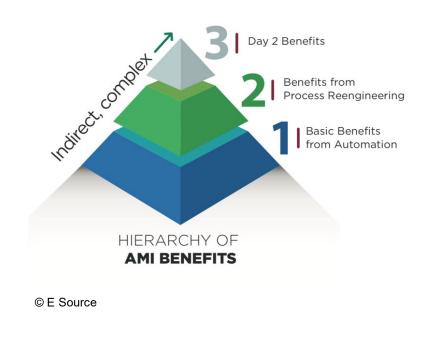
Joel Westvold, PMP

Account Executive/Executive Consultant, Technology Planning and Implementation Consulting E Source 503-944-9434 joel westvold@esource.com

Kevin Healy Acting Manager, West Water Operations Halifax Water

Kody M. Salem Senior Vice President, Business Development, Technology Planning and Implementation Consulting E Source kody salem@esource.com

Based on where you are in your AMI journey, where should your focus be?


- System age
- System performance
- Longing for that new car smell

AMI and utility benefits

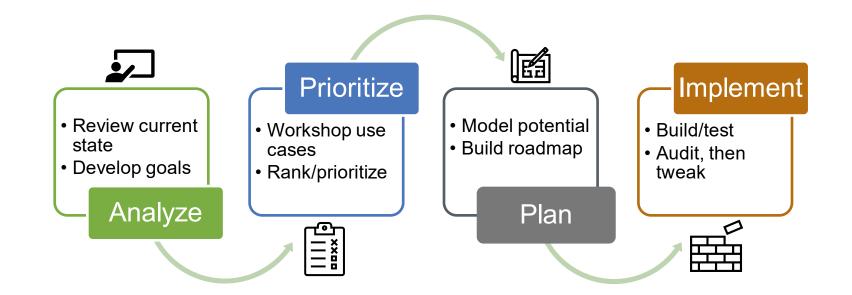
- Most advanced metering infrastructure (AMI) implementations are based on a feasibility study that examines the economic benefits of AMI
- After AMI is installed, utilities want to improve the operation and look for ways to leverage the investment
- Most of these benefits focus on the advantages of automation and new technology features
- It's possible to get more-sophisticated benefits from:
 - Business process reengineering
 - Looking at a utility from a broader "system of systems" standpoint

ISource

5

Proposition: AMI Day 2 roadmap

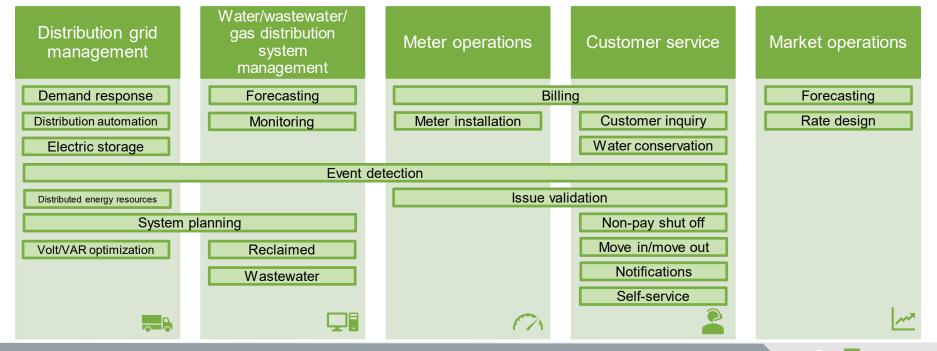
Move beyond the initial, moredirect benefits and incorporate those that build increasing value over time Develop a roadmap as a collaborative effort with business and technology groups at your utility


Some areas to consider:

- Analytics—use of data across the organization
- Outage management
- Distribution automation
- Conservation voltage reduction

- Demand response
- Streetlighting control
- Prepay
- Time-of-use
- Sharing the AMI network

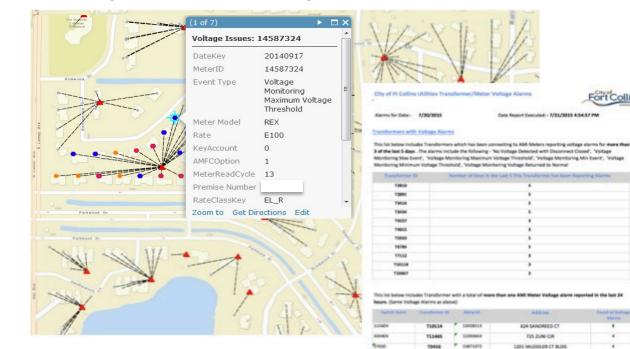
E Source facilitates an end-to-end process



Our experts bring the knowledge and experience to get it done!

E Source use case library

Our team maintains a library of more than 150 (and growing) utility-focused use cases for water, electric, and gas utilities



ESource

8

Case study: City of Fort Collins, Colorado

Transformer loading and related voltage alarms

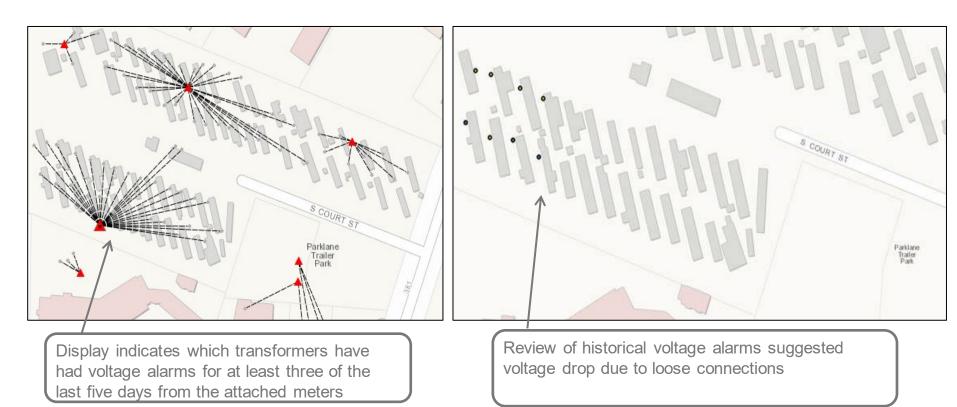
Ser

500

11471724

15375402

9101 SUMAC ST


2120 S COLLEGE AVE

15454

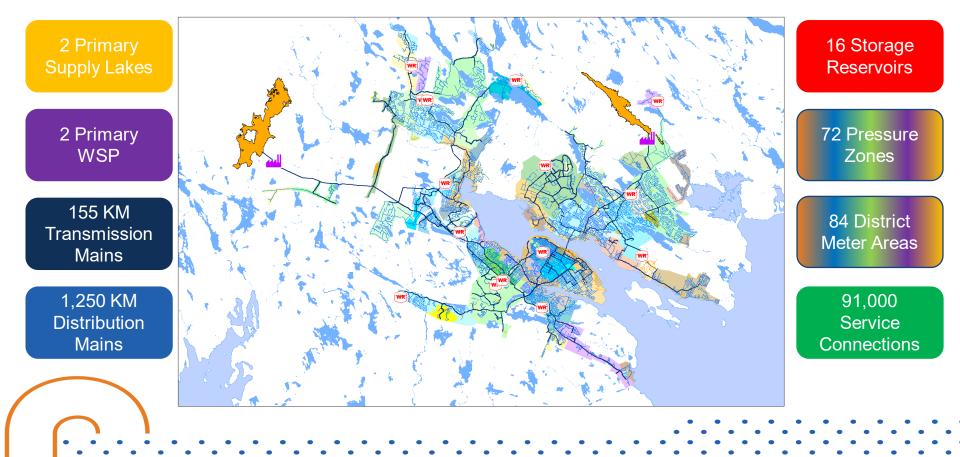
145(5)

Transformer loading and related alarms

Use case for example

Electric	Water	Wastewater	Gas	Category	Subcategory	Functional use case	Use case description	Prerequisite technologies or integrations	Cost potential	Benefit potential	Notes
	Х			Operations	Resource assurance	Pressure zone mass balance	Water usage within a water pressure zone can be aggregated and compared to SCADA to identify water loss in each pressure zone. Spatial analysis can enhance the analysis.	Custom analytics	3	3	
	X			Engineering	System planning	Water pressure zone trending	Utilities with more than one water pressure zone can trend the water usage for each zone. Aggregated water usage within a pressure zone can be trended for long-term usage, holidays, weekends, weekdays, or event related. The trends can be used for operational decisions and storage and pumping analysis.	Custom analytics	3	3	

© 2023 E Source | Proprietary and confidential


Halifax Water

STRAIGHT from the SOURCE

Halifax Water Network

Water Loss Control Program

1999 - New WSP

- Production costs higher than other supply facility
- Motivation to develop systemwide water loss program

Reviewed North American Practices

 Most best practices were already being utilized

Extended Search Internationally

- International Water Association (IWA) best practices in use in UK
- First North American utility to adopt IWA methods
- District meter area (DMA) key tactic

2000s – Implementation

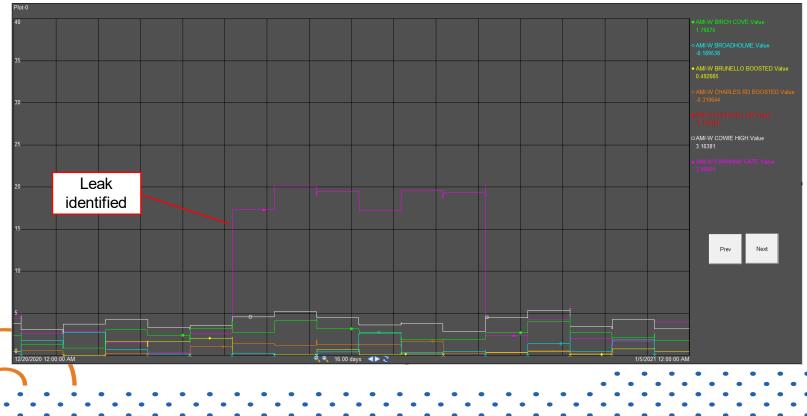
- Development of DMAs
- Robust monitoring network
- Pi as data historian
- Data available to all who can use it
- Skilled field staff
- Continuous
 improvement

Conventional Methods

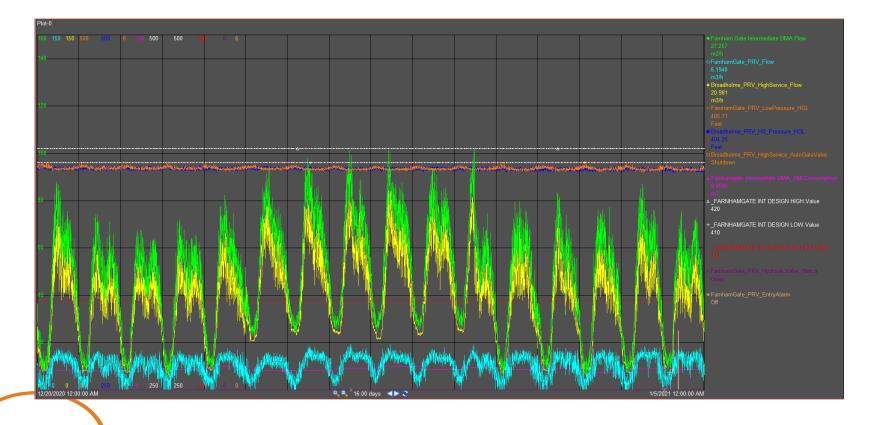
Leakage on Transmission and Distribution Mains

• Whiteboard

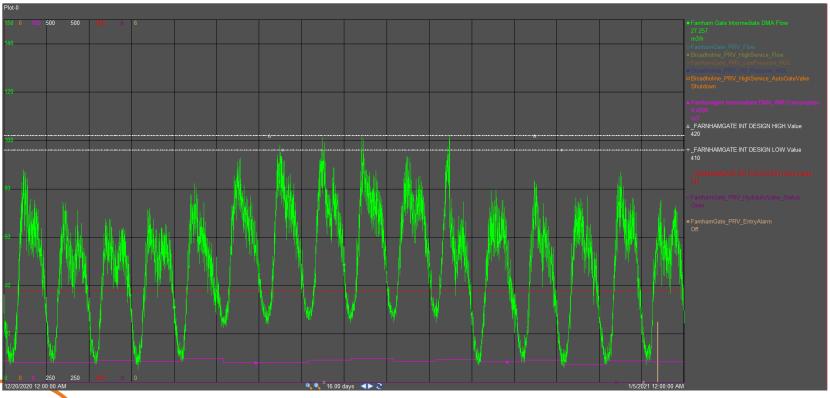
West Region Zone Night Flows (igpm)


	Benchmark	<u>18-Sep</u>	<u>17-Sep</u>	<u>16-Sep</u>	<u>15-Sep</u>	<u>14-Sep</u>	Diff
Peninsula Low North	1338	1343.1	1221.7	1320.1	1385.1	1354.5	5
Peninsula Low South	310	295.4	273.6	272.9	258.8	271.8	15
Intermediate Central	550	340.1	465.2	417.1	443.2	454.1	210
Intermediate South	933	647.9	630.9	580.6	572.6	716.2	285
Intermediate North	450	595.2	645.1	614.5	561.3	528.8	145
Peninsula Intermediate	2050	1584.2	1741.2	1611.6	1576.4	1694.3	466
Peninsula High	0	65.1	66.3	68.2	67.7	61.0	65
Fairview Clayton Park	185	209.0	177.7	233.9	209.6	220.5	24
Farnham Gate Intermediate	21	51.6	52.7	47.7	54.2	48.3	31
Broadholme Intermediate	19	27.3	20.6	25.1	12.6	24.3	8
Lakeside Intermediate	100	39.0	37.9	45.2	39.3	37.6	61
Spryfield Intermediate	187	211.6	131.6	142.4	121.4	142.9	25
Cowie High	3	27.1	24.8	27.3	26.2	23.7	24
Glenforest Intermediate	20	15.1	13.2	16.4	16.7	13.3	5
Titus Evans Low	120	282.8	266.9	268.0	264.0	278.7	163
Leiblin Boosted	0	28.5	31.1	25.3	36.9	37.1	29
Herring Cove Rd Intermediate	80	83.7	87.0	88.9	107.0	96.4	4
Herring Cove Low	0	3.9	7.8	14.8	14.2	12.0	4
Churchill Intermediate	0	1.3	1.7	1.8	1.5	2.9	1
Birch Cove	10	27.5	26.8	28.9	28.8	33.4	17
Brunello Boosted	0	9.1	4.9	3.3	2.8	5.4	9
Charles Road Boosted	7	4.0	3.5	4.7	4.0	4.3	3
Williams Lake Low	12	19.1	19.9	24.9	20.5	19.5	7
Daily System Input (igpd)			13,679,000	13,443,000	13,519,000	13,663,000	
Olands	ſ	143.0	211.4	141.0	100.2	80.7	

Utilizing AMI Data

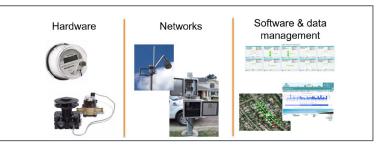

AMI data in Pi

• Night flow differentials (AMI consumption versus DMA supply)



Utilizing AMI Data

Utilizing AMI Data


Halifax Water

• •

AMI 2.0

- Also known as next-generation AMI
- AMI 2.0 definition varies based on the expectations of utilities replacing their AMI systems
 - Utilities that installed AMI using SGIG grants are approaching end of life for their original investments
 - What more can be done?
- There's a wide range of how AMI vendors are approaching AMI 2.0
 - Some of the applications we'll discuss are being delivered; some are aspirational—will continue to evolve
- Let's explore this by the individual components

AMI today

ISource

AMI allows **two-way communication** between a customer's meter and the utility, and it provides information about usage.

Electric metering

- Increasing computing power and memory
- Higher-resolution reading and billing (for transactive/distributed energy)
- Higher-amp remote disconnects
- Increasing edge computing functionality for utility and customer
 - Self-determination of location on grid (transformer, phase, feeder); could also lead to feeding real-time connectivity models
 - EV/distributed energy resource (DER) awareness
 - Improved power quality awareness

Distributed intelligence/grid edge

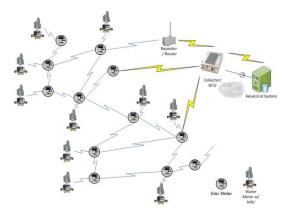

- Increased computing power in electric meters enables distributed intelligence/grid-edge applications at the meter
- These applications will probably be proprietary to the specific vendors and their meter models; examples:
 - L&G:
 - Grid location awareness, anomaly detection, and intelligent voltage monitoring
 - Home analytics, real-time high-energy-usage alerts, and meter safety alerts
 - Itron:
 - Active transformer load monitoring, active voltage monitoring, temperature monitoring, load management, high-impedance detection
 - EV awareness, Solar awareness
- Widespread use of third-party application development goes beyond AMI 2.0

Distributed Analytic with P2P

Source: Itron

Water metering

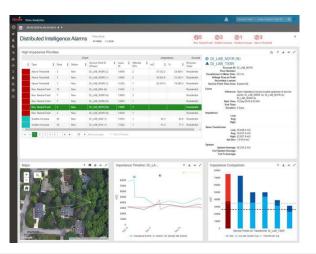
- Higher-resolution reading (0.1 cubic feet or gallon) (improved leak and backflow detection)
- Pressure and temperature measurement
- Remote disconnects (integrated or separate valve)
- Acoustic leak detection

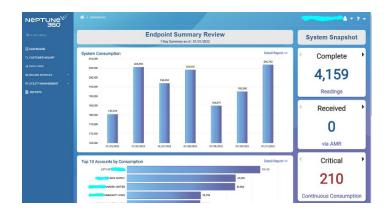


AMI networks

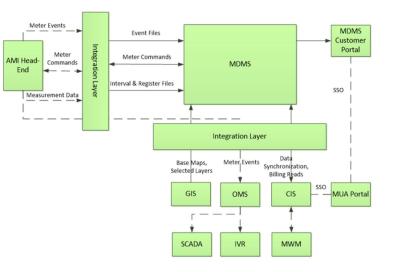
- Increased bandwidth, reduced latency to meet increasing demands
- Increased frequency of data delivery (e.g., 5- or 15-minute intervals returned every hour) for customers, transactional energy, system grid awareness, etc.
- Reduced latency improves support for distribution automation control
- Open-standards communications modules or gateways to support generic and third-party sensors (WiSun and LoRa Wan)
- Network-as-a-service (NaaS)
- Commercialization of utility networks to other entities
- What is the future of propriety networks versus utility-owned (private LTE) versus public cell?

RF mesh solution and propagation analysis




Source: Itron

Headend systems (HESs)


- More-user-friendly functionality
- Absorption of meter data management (MDM) functionality (longer data storage; validating, editing, and estimation [VEE]; integration support) to eliminate need for separate MDM
- Absorbing MDM functionality may not benefit larger utilities, but it may reduce complexity for smaller utilities

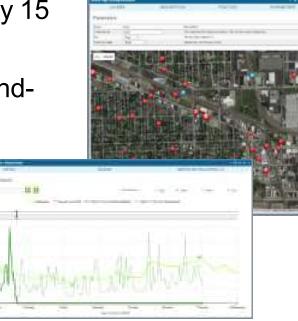
MDM systems

- Easier integration, or preintegrated, with headend system and/or customer information system (CIS)
- Move away from "daily data" paradigm; data is available as it's received
- Adding optional analytics modules
- Moving to more-generalized analytics platforms included for data ingress and manipulation
- More options in approach to calculating demand and complex rates
- Availability of data warehouse/data lake for extended data storage

- Long-term storage
- Basic analytics
- Source of customer portal data
- Integrations facilitate greater uses
- VEE functionality
 - Helps automate manual pre-AMI processes

Customer experience/functionality

- More-timely usage data
- Potential behind-the-meter functionality (just not ZigBee; need better, more-enhanced use cases)
- Phone or app-based



ESource

26

- Simple bellwether meter configuration and frequency—15-minute voltage delivered every 15 minutes or more frequently
- Conservation voltage reduction—tie to AMI endnode voltages
- Phase detection
- Transformer loading
- EV/DER disaggregation
- Rolling blackout and cold load pickup management

Behind the meter

- Communications reach into buildings to support in-home devices; initial HAN devices and systems largely abandoned
- Expanded suite of two-way demand response devices controlled via AMI network that's not dependent on the meter
- Control smart inverters, storage, etc. that are not dependent on the meter
 - Applicable to EVs and DERs
- Energy disaggregation (premise appliances/systems) and load profiling for these applications

28

II Source

Support for smart cities

- Robust endpoint partnerships controlled via the AMI network
- Open, shared data platform across entities
- Unified network—AMI, water and gas Internet of Things, streetlighting/gunshot/air quality, parking, distribution automation, etc.
- Emergency services; ability to disconnect or reconnect services as needed (e.g., building fire)

End user perspectives

Desire for near real-time view of my usage/production/net so I can determine how changes to my living/business patterns, appliances, temperature settings, etc., impact my usage and bill. Waiting to see today's usage tomorrow isn't cutting it.

- Residential
- Small and midsize business (SMB) customers
- Commercial and industrial customers
- Customers with distributed generation

Faster or more-complete communication of events that directly impact my life or business (whether provided by a grid-edge application directly to the customer or central processing communicated via a customer engagement portal, SMS alerts, etc.)

- Electric—outages, power quality issues, usage spikes or increased usage during peak-time rates, safety and hot socket events, etc.
- Pricing signals so I can determine if I want to use my distributed energy internally (directly or storage) or sell into the grid at that price point
- For each location/meter
 - Outages, power quality issues, increased usage during peak-time rates, peak demand to date, coincident peak to date, power factor to date, etc.

What are we seeing from utilities?

- AMI 2.0 roadmaps
 - Developing their definition of what they expect from AMI 2.0
 - Key step in developing internal and external stakeholder vision
- AMI 2.0 migrations
 - Migrating to a next-generation system within the partnership of their existing vendor(s)
 - Network and meter migration plan—managing a mixed system
 - Migration of ownership, hosting, and support models to meet their vision
- Next-generation AMI RFPs
 - Beginning the process of replacing their existing AMI system
 - Requirements, deployment strategy, and requested services tailored to their unique situation and vision
- You are educated buyers
 - You have many years of AMI experience to your advantage—vendor awareness, self-awareness
 - Staffing continues to be lean

Replacing an AMI system

- Network replacement strategy
 - Locations
 - Interference
- Meter replacement strategy
 - Replace by cycle—again?
 - Replace by age, failures?
 - Replace by strategic objectives?
 - Minimize impact on the mesh?

To replace a mesh, you need a methodical analysis and approach

What is a break in the mesh (define it)	What are the consequences of a break	What are the mitigation factors if a break occurs
How do we keep a break from happening	What is the impact of these on the new AMI system	What are we missing

MDM as a buffer during replacement

- AMI 2.0 may not require replacement of your MDM
- Keep existing integrations and minimize disruptions to billing, operational reporting, etc.
- No migration of historical data required
- Does your MDM have a growth path consistent with your vision?

Questions?

Contact us

Joel Westvold, PMP

Account Executive/Executive Consultant, Technology Planning and Implementation Consulting E Source 503-944-9434 joel_westvold@esource.com

Kody M. Salem Senior Vice President, Business Development, Technology Planning and Implementation Consulting E Source kody salem@esource.com

You're free to share this document inside your company. If you'd like to quote or use our material outside of your business, please contact us at <u>esource@esource.com</u> or 1-800-ESOURCE (1-800-376-8723).

